细胞膜包载的纳米递药系统在肿瘤治疗中的研究进展

李爱雪, 赵语南, 姜良弟, 顾永卫, 刘继勇

中国药学杂志 ›› 2022, Vol. 57 ›› Issue (1) : 1-7.

PDF(1702 KB)
PDF(1702 KB)
中国药学杂志 ›› 2022, Vol. 57 ›› Issue (1) : 1-7. DOI: 10.11669/cpj.2022.01.001
综述

细胞膜包载的纳米递药系统在肿瘤治疗中的研究进展

  • 李爱雪1,2, 赵语南2, 姜良弟1,2, 顾永卫2, 刘继勇2*
作者信息 +

Research Progress of Cell Membrane Coated Nanoscale Drug Delivery System in Tumor Therapy

  • LI Ai-xue1,2, ZHAO Yu-nan2, JIANG Liang-di1,2, GU Yong-wei2, LIU Ji-yong2*
Author information +
文章历史 +

摘要

纳米技术为肿瘤药物治疗提供了新型递送载体以增加药物的稳定性和溶解性,延长其半衰期,提高药物治疗效果。但传统的以合成材料为载体的纳米递送系统靶向性差,易被免疫系统清除,并具有潜在的系统毒性。以细胞膜包被药物或纳米粒制备的仿生纳米递药系统具有载药量高、主动靶向性强、生物相容性好等优势,已成为药物制剂学领域的研究热点。此外,细胞膜的功能各异,可根据不同的治疗目标选择红细胞膜、免疫细胞膜、血小板膜和肿瘤细胞膜等负载药物或包覆纳米颗粒。本文主要综述了不同类型细胞膜包载的纳米递药系统在肿瘤治疗中的研究现状及其在临床应用中面临的挑战和发展前景。

Abstract

Nanotechnology provides new delivery carriers for tumor drug therapy to increase the stability and solubility of drugs, prolong their half-life and improve the efficacy. However, the traditional nano-delivery system based on synthetic materials has poor targeting and potential systemic toxicity, and is easy to be cleared by the immune system. Cell membrane coated nanoscale drug delivery system has become a research hotspot in pharmaceutics because of its advantages such as high drug loading, active targeting and good biocompatibility. In addition, the functions of cell membranes are different according to their source. Therefore, red blood cell membranes, immune cell membranes, platelet membranes and tumor cell membranes can be loaded or coated with nanoparticles based on different treatment targets. This article mainly reviews the research status of different types of biomimetic nano-drug delivery systems coated with cell membrane in tumor therapy, as well as the challenges and development prospects in clinical application.

关键词

细胞膜 / 药物递送系统 / 纳米颗粒 / 肿瘤

Key words

cell membrane / drug delivery system / nanoparticle / tumor

引用本文

导出引用
李爱雪, 赵语南, 姜良弟, 顾永卫, 刘继勇. 细胞膜包载的纳米递药系统在肿瘤治疗中的研究进展[J]. 中国药学杂志, 2022, 57(1): 1-7 https://doi.org/10.11669/cpj.2022.01.001
LI Ai-xue, ZHAO Yu-nan, JIANG Liang-di, GU Yong-wei, LIU Ji-yong. Research Progress of Cell Membrane Coated Nanoscale Drug Delivery System in Tumor Therapy[J]. Chinese Pharmaceutical Journal, 2022, 57(1): 1-7 https://doi.org/10.11669/cpj.2022.01.001
中图分类号: R944   

参考文献

[1] EUR J PHARM BIOPHARMGUIDO C, MAIORANO G, CORTESE B, et al. Biomimetic nanocarriers for cancer target therapy. Bioengineering (Basel), 2020, 7(3):111. DOI:10.3390/bioegineering7030111.
[2] HU D, SHENG Z, GAO G, et al. Activatable albumin-photosensitizer nanoassemblies for triple-modal imaging and thermal-modulated photodynamic therapy of cancer. Biomaterials, 2016, 93:10-19.
[3] WANG G, WU B, LI Q, et al. Active transportation of liposome enhances tumor accumulation, penetration, and therapeutic efficacy. Small, 2020, 16(44):e2004172. DOI:10.1002/small.202004172.
[4] GUAN S, ZHANG Q, BAO J, et al. Phosphatidylserine targeting peptide-functionalized pH sensitive mixed micelles for enhanced anti-tumor drug delivery. Eur J Pharm Biopharm, 2020, 147:87-101.
[5] MAITI D, CHAO Y, DONG Z, et al. Development of a thermosensitive protein conjugated nanogel for enhanced radio-chemotherapy of cancer. Nanoscale, 2018, 10(29):13976-13985.
[6] WANG H, LIU Y, HE R, et al. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomater Sci, 2020, 8(2):552-568.
[7] KOPECKA J, TROUILLAS P, GA?PAROVI? A, et al. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat, 2020, 49:100670. DOI:10.1016/j.durp.2019.100670.
[8] LI B, YUAN Z, ZHANG P, et al. Zwitterionic nanocages overcome the efficacy loss of biologic drugs. Adv Mater, 2018, 30(14):e1705728. DOI:10.1002/adma.201705728.
[9] SPANJERS J M, ST?DLER B. Cell membrane coated particles. Adv Biosyst, 2020, 4(11):e2000174. DOI:10.1002/adbi.202000174.
[10] XIA Q, ZHANG Y, LI Z, et al. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B(药学学报 英文), 2019, 9(4):675-689.
[11] PEREIRA-SILVA M, SANTOS A C, CONDE J, et al. Biomimetic cancer cell membrane-coated nanosystems as next-generation cancer therapies. Expert Opin Drug Deliv, 2020, 17(11):1515-1518.
[12] SU J, SUN H, MENG Q, et al. Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics, 2017, 7(3):523-537.
[13] FANG R H, KROLL A V, GAO W, et al. Cell membrane coating nanotechnology. Adv Mater, 2018, 30(23):e1706759. DOI:10.1002/adma.201706759.
[14] HU C M, FANG R H, WANG K C, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature, 2015, 526(7571):118-121.
[15] COPP J A, FANG R H, LUK B T, et al. Clearance of pathological antibodies using biomimetic nanoparticles. Proc Natl Acad Sci USA, 2014, 111(37):13481-13486.
[16] RAO L, CAI B, BU L L, et al. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano, 2017, 11(4):3496-3505.
[17] FENG S, ZHANG H, XU S, et al. Folate-conjugated, mesoporous silica functionalized boron nitride nanospheres for targeted delivery of doxorubicin. Mater Sci Eng C Mater Biol Appl, 2019, 96:552-560.
[18] FENG S, ZHANG H, ZHI C, et al. pH-responsive charge-reversal polymer-functionalized boron nitride nanospheres for intracellular doxorubicin delivery. Int J Nanomed, 2018, 13:641-652.
[19] FENG S, LI H, REN Y, et al. RBC membrane camouflaged boron nitride nanospheres for enhanced biocompatible performance. Coll Surf B Biointerfaces, 2020, 190:110964. DOI:10.1016/j.colsurfb.2020.110964.
[20] PEREVERZEVA E, TRESCHALIN I, TRESCHALIN M, et al. Toxicological study of doxorubicin-loaded PLGA nanoparticles for the treatment of glioblastoma. Int J Pharm, 2019, 554:161-178.
[21] XIE X, WANG H, WILLIAMS G R, et al. Erythrocyte Membrane Cloaked Curcumin-Loaded Nanoparticles for Enhanced Chemotherapy. Pharmaceutics, 2019, 11(9). DOI:10.3390/pharmaceutics11090429.
[22] LI Y, LI N, PAN W, et al. Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl Mater Interfaces, 2017, 9(3):2123-2129.
[23] LEE J Y, VYAS C K, KIM G G, et al. Red blood cell membrane bioengineered Zr-89 labelled hollow mesoporous silica nanosphere for overcoming phagocytosis. Sci Rep, 2019, 9(1):7419. DOI:10.1038/s41598-019-43969-y.
[24] CHAI Z, HU X, WEI X, et al. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J Controlled Release, 2017, 264:102-111.
[25] FANG R H, HU C M, CHEN K N, et al. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale, 2013, 5(19):8884-8888.
[26] FU S, LIANG M, WANG Y, et al. Dual-modified novel biomimetic nanocarriers improve targeting and therapeutic efficacy in glioma. ACS Appl Mater Interfaces, 2019, 11(2):1841-1854.
[27] DANIYAL M, JIAN Y, XIAO F, et al. Development of a nanodrug-delivery system camouflaged by erythrocyte membranes for the chemo/phototherapy of cancer. Nanomedicine (Lond), 2020, 15(7):691-709.
[28] KIM M W, LEE G, NIIDOME T, et al. Platelet-like gold nanostars for cancer therapy: the ability to treat cancer and evade immune reactions. Front Bioeng Biotechnol, 2020, 8:133. DOI:10.3389/fbioe.2020.00133.
[29] NAJAFI M, HASHEMI GORADEL N, FARHOOD B, et al. Macrophage polarity in cancer: a review. J Cell Biochem, 2019, 120(3):2756-2765.
[30] HU C, LEI T, WANG Y, et al. Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials, 2020, 255:120159. DOI:10.1016/j.biomaterials.2020.120159.
[31] LIU R, YU M N, YANG X T, et al. Linear chimeric triblock molecules self-assembled micelles with controllably transformable property to enhance tumor retention for chemo-photodynamic therapy of breast cancer. Adv Funct Mater, 2019, 29(23):16. DOI:10.1022/adfm.201808462.
[32] LIU R, AN Y, JIA W, et al. Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. J Controlled Release, 2020, 321:589-601.
[33] CAO X, TAN T, ZHU D, et al. Paclitaxel-loaded macrophage membrane camouflaged albumin nanoparticles for targeted cancer therapy. Int J Nanomed, 2020, 15:1915-1928.
[34] ZHANG Y, GUOQIANG L, SUN M, et al. Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment. Cancer Biol Med, 2020, 17(1):32-43.
[35] HAN Y, ZHAO R, XU F. Neutrophil-based delivery systems for nanotherapeutics. Small, 2018, 14(42):e1801674. DOI:10.1002/small.201801674.
[36] CAO X, HU Y, LUO S, et al. Neutrophil-mimicking therapeutic nanoparticles for targeted chemotherapy of pancreatic carcinoma. Acta Pharm Sin B(药学学报 英文), 2019, 9(3):575-589.
[37] MAIMELA N R, LIU S, ZHANG Y. Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J, 2019, 17:1-13.
[38] ROTTE A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res, 2019, 38(1):255. DOI:10.1186/s13046-019-1259-z.
[39] KANG M, HONG J, JUNG M, et al. T-cell-mimicking nanoparticles for cancer immunotherapy. Adv Mater, 2020, 32(39):e2003368. DOI:10.1002/adma.202003368.
[40] HERZYK D J, HAGGERTY H G. Cancer immunotherapy: factors important for the evaluation of safety in Nonclinical Studies. Aaps J, 2018, 20(2):28. DOI:10.1208/s12248-017-0184-3.
[41] CHEN X, WANG Q, LIU L, et al. Double-sided effect of tumor microenvironment on platelets targeting nanoparticles. Biomater, 2018, 183:258-267.
[42] SHANG Y, WANG Q, LI J, et al. Platelet-membrane-camouflaged zirconia nanoparticles inhibit the invasion and metastasis of hela cells. Front Chem, 2020, 8:377. DOI:10.3389/fchem.2020.00377.
[43] WU L, XIE W, ZAN H M, et al. Platelet membrane-coated nanoparticles for targeted drug delivery and local chemo-photothermal therapy of orthotopic hepatocellular carcinoma. J Mater Chem B, 2020, 8(21):4648-4659.
[44] DENG J, XU S, HU W, et al. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials, 2018, 154:24-33.
[45] CHEN Y, ZHAO G, WANG S, et al. Platelet-membrane-camouflaged bismuth sulfide nanorods for synergistic radio-photothermal therapy against cancer. Biomater Sci, 2019, 7(8):3450-3459.
[46] YE H, WANG K, LU Q, et al. Nanosponges of circulating tumor-derived exosomes for breast cancer metastasis inhibition. Biomaterials, 2020, 242:119932. DOI:10.1016/j.biomaterials.2020.119932.
[47] GUO Y, JI X, LIU J, et al. Effects of exosomes on pre-metastatic niche formation in tumors. Mol Cancer, 2019, 18(1):39. DOI:10.1186/s12943-019-0995-1.
[48] SZCZERBA B M, CASTRO-GINER F, VETTER M, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature, 2019, 566(7745):553-557.
[49] HE Z, ZHANG Y, FENG N. Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: A review. Mater Sci Eng C Mater Biol Appl, 2020, 106:110298. DOI:10.1016/j.msec.2019.110298.
[50] JANISZEWSKA M, PRIMI M C, IZARD T. Cell adhesion in cancer: beyond the migration of single cells. J Biol Chem, 2020, 295(8):2495-2505.
[51] NEGI L M, TALEGAONKAR S, JAGGI M, et al. Hyaluronated imatinib liposomes with hybrid approach to target CD44 and P-gp overexpressing MDR cancer: an in-vitro, in-vivo and mechanistic investigation. J Drug Target, 2019, 27(2):183-192.
[52] DEI S, BRACONI L, TREZZA A, et al. Modulation of the spacer in N,N-bis(alkanol)amine aryl ester heterodimers led to the discovery of a series of highly potent P-glycoprotein-based multidrug resistance (MDR) modulators. Eur J Med Chem, 2019, 172:71-94.
[53] ZHANG X, LI Y, WEI M, et al. Cetuximab-modified silica nanoparticle loaded with ICG for tumor-targeted combinational therapy of breast cancer. Drug Deliv, 2019, 26(1):129-136.
[54] LI D, CUI R, XU S, et al. Synergism of cisplatin-oleanolic acid co-loaded hybrid nanoparticles on gastric carcinoma cells for enhanced apoptosis and reversed multidrug resistance. Drug Deliv, 2020, 27(1):191-199.
[55] NIE D, DAI Z, LI J, et al. Cancer-cell-membrane-coated nanoparticles with a yolk-shell structure augment cancer chemotherapy. Nano Lett, 2020, 20(2):936-946.
[56] HU Z, OTT P A, WU C J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol, 2018, 18(3):168-182.
[57] FUSCIELLO M, FONTANA F, T?HTINEN S, et al. Artificially cloaked viral nanovaccine for cancer immunotherapy. Nat Commun, 2019, 10(1):5747. DOI:10.1038/s41467-019-13744-8.
[58] ZHU G, ZHANG F, NI Q, et al. Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano, 2017, 11(3):2387-2392.
[59] NI J, SONG J, WANG B, et al. Dendritic cell vaccine for the effective immunotherapy of breast cancer. Biomed Pharmacother, 2020, 126:110046. DOI:10.1016/j.biopha.2020.110046.
[60] CHENG R, FONTANA F, XIAO J, et al. Recombination monophosphoryl lipid a-derived vacosome for the development of preventive cancer vaccines. ACS Appl Mater Interfaces, 2020, 12(40):44554-44562.
[61] LIU Y, ZHAO J, JIANG J, et al. Doxorubicin delivered using nanoparticles camouflaged with mesenchymal stem cell membranes to treat colon cancer. Int J Nanomed, 2020, 15:2873-2884.
[62] PATEL R B, YE M, CARLSON P M, et al. Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane-coated nanoparticles. Adv Mater, 2019, 31(43):e1902626. DOI:10.1002/adma.201902626.
[63] TESI R J. MDSC; the most important cell you have never heard Of. Trends Pharmacol Sci, 2019, 40(1):4-7.
[64] LI J, ZHEN X, LYU Y, et al. Cell membrane coated semiconducting polymer nanoparticles for enhanced multimodal cancer phototheranostics. ACS Nano, 2018, 12(8):8520-8530.
[65] JIANG Q, LIU Y, GUO R, et al. Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials, 2019, 192:292-308.
[66] SUN M, DUAN Y, MA Y, et al. Cancer cell-erythrocyte hybrid membrane coated gold nanocages for near infrared light-activated photothermal/radio/chemotherapy of breast cancer. Int J Nanomed, 2020, 15:6749-6760.
[67] BU L L, RAO L, YU G T, et al. Cancer stem cell-platelet hybrid membrane-coated magnetic nanoparticles for enhanced photothermal therapy of head and neck squamous cell carcinoma. Adv Funct Mater, 2019, 29(10):11. DOI:10.1002/adfm.201807733.
[68] RAO L, MENG Q F, HUANG Q Q, et al. Platelet-leukocyte hybrid membrane-coated immunomagnetic beads for highly efficient and highly specific isolation of circulating tumor cells. Adv Funct Mater, 2018, 28(34):9. DOI:10.1002/adfm.201803531.
[69] LIU Y, WANG X, OUYANG B, et al. Erythrocyte-platelet hybrid membranes coating polypyrrol nanoparticles for enhanced delivery and photothermal therapy. J Mater Chem B, 2018, 6(43):7033-7041.
[70] HE H, GUO C, WANG J, et al. Leutusome: a biomimetic nanoplatform integrating plasma membrane components of leukocytes and tumor cells for remarkably enhanced solid tumor homing. Nano Lett, 2018, 18(10):6164-6174.
[71] GONG C, YU X, YOU B, et al. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. J Nanobiotechnol, 2020, 18(1):92. DOI:10.1186/s12951-020-00649-8.
[72] CHEN Q, HUANG G, WU W, et al. A hybrid eukaryotic-prokaryotic nanoplatform with photothermal modality for enhanced antitumor vaccination. Adv Mater, 2020, 32(16):e1908185. DOI:10.1002/adma.201908185.
[73] CAI H, WANG R, GUO X, et al. Combining gemcitabine-loaded macrophage-like nanoparticles and erlotinib for pancreatic cancer therapy. Mol Pharm, 2021, 18(7):2495-2506.
[74] ZHANG M, ZHANG F, LIU T, et al. Polydopamine nanoparticles camouflaged by stem cell membranes for synergistic chemo-photothermal therapy of malignant bone tumors. Int J Nanomed, 2020, 15:10183-10197.

基金

国家自然科学基金项目资助(81873011,82074272);上海市优秀学术带头人计划项目资助(21XD1403400)
PDF(1702 KB)

Accesses

Citation

Detail

段落导航
相关文章

/